Designing Robot Metamorphosis

Anne C. van Rossum a b H. Jaap van den Herik a

a Tilburg Centre for Cognition and Communication, Tilburg University, The Netherlands
b Almende B.V., Rotterdam, The Netherlands

Abstract

In the recent past, modular robot assembly and metamorphosis has been evolved using gene regulatory networks. However, until now, no methodology exists to engineer such a regulatory network. Three existing representations will be employed to describe robot metamorphosis. A graph rewriting grammar describes state and connectivity transitions between robot organisms at the most abstract level. A communicating finite state machine introduces messages at an intermediate level. A regulatory network presents the process of metamorphosis at its least abstract level. In short, we present a design methodology for metamorphosis for which, as yet, only evolutionary methods did exist.

1 Introduction

Classical artificial intelligence tends to place unbridled emphasis on pattern recognition, keeping pattern formation on a leash. Patterns are formed in the case of snow flakes, spots on a leopard skin, and bodies growing from fertilized eggs to adult body forms. The field of artificial morphogenesis studies the development of a single (robot) cell toward an artificial organism.

The field of artificial morphogenesis converges upon a technique called indirect encoding to implement morphogenesis in a decentralized manner. Indirect encoding requires a developmental process from genotype to phenotype to grow a structure or topology. It would lead us too far to elaborate on the benefits of an indirect encoding scheme. We briefly summarize potential advantages: compressibility [7], exploitation of output geometry [5], robustness against phenotypic “injuries” [11], the ability to encode for phenotypic plasticity, and allowing for epigenetic factors [13] (the influence of the environment).

Hitherto, indirect encoding schemes have always been evolved. There have been no attempts to create a genome given an adult body form. We will describe such a reverse path from a dynamic body configuration toward a set of regulating entities — the genes. If an explicit design trajectory is available, it will be possible to (1) create benchmarks, (2) compare hand-coded regulatory networks with evolutionary search methods, and (3) bootstrap evolutionary search.

1.1 Replicator robots

The domain to which we will apply artificial morphogenesis or morphodynamics1 is modular robotics. Modular robots are able to connect to each other to form large robot organisms. Imagine a bag full of modular robots, emptied in a collapsed mine. The robots assemble into larger organisms to navigate through the mine, move obstacles and find survivors. The diversity of challenges that the robots encounter asks for a diversity of body forms. Robot assembly and metamorphosis is part of a robotic challenge defined in the FP7 project Replicator [8]. In Fig. 1 the scenario is sketched. Different robot morphs are needed to overcome obstacles or climb on obstacles to obtain energy from power outlets. Our problem statement reads: How to design a gene regulatory network for metamorphic robots?

1Overview

1The term morphodynamics originates from beach morphodynamics: sediments relentlessly changing sea-floor morphology. Here it denotes robots that do not just grow towards a static body shape, but that have a dynamic topology.
Robot metamorphosis is presented at the most abstract level as a reconfiguration problem in Section 2 to which effect a graph rewriting grammar is employed. At an intermediate level of abstraction, communication required to perform reconfiguration is solidified in Section 3. To this end communicating finite state machines are put forward. In Section 4, at the lowest level of abstraction, the content of communication is examined in the form of regulatory elements and circuits. Section 5 contains our conclusion.

2 Reconfiguration

At the highest level of abstraction, a robot is represented by an undirected graph (Fig. 2). Transitions from one body form to the next are described in Eq. 1 by a graph rewriting grammar. Graph rewriting grammar has been used before to describe robot assembly (see Klavins in [9]). Here we (1) describe robot metamorphosis, (2) add a connection matrix (Subsection 2.1), and (3) establish additional terminology (Subsection 2.2) for the metamorphic case.

\[
\Phi_1 = \begin{cases}
 r_0 : b \rightarrow c & \Rightarrow b \rightarrow e \\
 r_1 : e \rightarrow e & \Rightarrow e \rightarrow C_{00} \rightarrow f \\
 r_2 : a \rightarrow f & \Rightarrow f \rightarrow b \\
 r_3 : a \rightarrow e & \Rightarrow d \rightarrow b \\
 r_4 : b \rightarrow f & \Rightarrow b \rightarrow C_{02} \\
\end{cases}
\]

\[
\Phi_2 = \begin{cases}
 u_0 : b \rightarrow c & \Rightarrow b \rightarrow e \\
 u_1 : e \rightarrow b & \Rightarrow b \rightarrow C_{00} \rightarrow b \\
 u_2 : a \rightarrow b & \Rightarrow f \rightarrow b \\
 u_3 : e \rightarrow f & \Rightarrow d \rightarrow C_{02} \rightarrow b \\
 u_4 : a \rightarrow d & \Rightarrow d \rightarrow b \\
\end{cases}
\]

Equation 1 shows two possible sets of rules to transition from the H-form of Fig. 2 to the snake form: \(\Phi_1\) and \(\Phi_2\). The rule sets are different, but lead to an equivalent result in the form of the snake. The rules are executed in a random order and possibly in parallel. Each label \(a\) through \(f\) stands for a robot module in a certain state. The grammar rules have a right-hand and a left-hand side. Both hands are limited to two robots to enforce pair-wise interactions. With a maximum of two elements per side, no coordination among three or more robot modules is needed to reorganize the robot topology. In other words, the reconfiguration problem can be solved locally.

Rule \(r_0\) in Eq. 1 has a left-hand side which represents a module \(b\) connected to a module \(c\). The execution of this rule causes those pairs to disconnect (no line is drawn at the right-hand side) and transforms \(c\) into \(e\). This will not be a physical change, but a state change. Starting with the H-topology in Fig. 2, the rule results in a collection of \(b \rightarrow b \rightarrow b \rightarrow b\) and \(a \rightarrow e\) chains, as well as intermediate forms derived from the original H-topology. In explicit terms, with this one rule, \(r_0\), we can remove all the \(a \rightarrow c\) “legs” from the H-topology. Contrary to rule \(r_0\), the rule \(r_1\) in Eq. 1 has no line drawn at the left-hand side of the rule: \(e \rightarrow e\). Here we note in anticipation of Section 3 that such a rule involves wireless communication before a physical connection is made. Moreover, rule \(r_1\) introduces an indeterministic element. One of the modules in state \(e\) turns into an \(f\) while the other remains the same. Using this feature, directionality can be introduced to the \(a \rightarrow e \rightarrow f \rightarrow a\) chains (the \(f\) “moves” to the extremity and binds to the \(b \rightarrow b \rightarrow b \rightarrow b\) chain).

\(^2\)Observe that a state can also be used functionally. Modules in state \(b\) can have a different set of sensors turned on and off compared to modules in state \(a\). For example, only the modules \(d\) in the snake in Fig. 2 might have their camera turned on.
Figure 2: An H-shaped and a snake-like robot topology. Each robot is represented by a vertex with a maximum of four outgoing edges. Each edge corresponds to a connection. Labels on each vertex represent internal states. Graph rewriting rules define state transitions. The transition from the H-shaped topology to the snake topology is described by a set of graph rewriting rules.

2.1 Connection matrix

The ordinary graph grammar [9] is extended with an additional connection matrix. According to rule r_1, the connection matrix C (see [4]) defines how e and f are connected. There is only one connection possible between two modules, $\sum_{\text{side}=(i,j)=0,0} C_{i,j} = 1$, so we can represent this single connection by its row and column index C_{ij}. The matrix C_{00} means that both modules connect to each other with their locally defined coordinate system (for instance, both to the “north” side, from the four cardinal directions). Further details on matrix representations of robot configurations can be found in [4].

2.2 Reciprocity

In Eq. 2 a “reciprocal” set of both instances Φ_1 and Φ_2, called Υ_1, is described. This is the reverse transition from the snake to the H-figure in Fig. 2.

$$\Upsilon_1 = \begin{cases}
 s_0 : b \quad \Rightarrow \quad a \quad c \\
 s_1 : a \quad \Rightarrow \quad a \quad e \\
 s_2 : b \quad \Rightarrow \quad f \quad e \\
 s_3 : b \quad \Rightarrow \quad g \quad e \\
 s_4 : c \quad \Rightarrow \quad a \quad c \\
 s_5 : g \quad c \quad \Rightarrow \quad g \quad C_{10} \quad c \\
 s_6 : g \quad c \quad \Rightarrow \quad b \quad C_{10} \quad c
\end{cases}$$

A reciprocal metamorphic pair obeys $C = C\Phi\Upsilon$. The consecutive execution of Φ and Υ results in the same robot body form C. The reciprocal set Υ_1 describes the transition from the snake form to the H-form. A robot that has the ability to morph from one form to the other needs to have (equivalents of) both sets in its repertoire. We note that the mere combination of Φ_1 or Φ_2 with Υ_1 will not necessarily lead to a stable outcome. The population of robots will also consist of all intermediate forms of robots.

It is possible to prevent the proliferation of intermediate body forms by introducing the concept of a dual rule. On inspection of Φ_1 and Υ_1 a dual rule can be found: the left-hand side of r_0 is equal to the right-hand side of s_6. In Fig. 2 rule r_0 corresponds to the removal of the $a - c$ legs from the H-figure, while the s_6 rule causes them to attach to the (shortened) snake body. The uncontrolled case executes all rules in Φ and Υ randomly. To reach a desired body shape, the dual rules need not to be executed by chance, but by external control. Control overhead can be reduced by designing such a rule set such that only one dual rule exist.

3This can be seen by performing the graph rewriting rules. A general proof of this property might be an interesting follow-up study.
3 Communication

At an intermediate level of abstraction we specify how to represent communication between robot modules. Biological cell communication can be seen, admittedly caricatured, as the exchange of protein vectors over time. Evolving an efficient communication scheme between entities is called language grounding [12]. In other words, inter-cell communication can be described as cellular language grounding. We represent the cell’s interactions in the form of a communication finite state machine in Subsection 3.1. Moreover, a distinction is made between wired and wireless messages in Subsection 3.2 to be able to deduct the required number of message types from such a communicating state machine.

3.1 Communicating finite state machines

Each robot module can be represented by a finite state machine (FSM). Interactions between FSMs can be modeled by a communicating finite state machine [3]. The edges in a communicating FSM carry labels and, like in ordinary FSMs, denote state transitions. An edge can only be traversed when two communicating FSMs are in a synchronized state. Synchronization is defined by one FSM being in a state preceding an edge with label $r_i!$, while the other is in a state with an outgoing edge labeled $r_i?$. The r_i label stands for a communication channel. As soon as the FSM writes on $r_i!$, the other FSM reads on $r_i?$ and both undergo a transition to the next state. We introduce here the communicating FSM approach to model communication between robot modules.

3.2 Wired and wireless communication

Figure 3 simplifies matters too much for a decision to be made on how many message types are required between communicating machines. First of all, a module in state a needs to send a composed message $[r_2, r_3]$. This message can have two mutually exclusive effects. A module in state f might change to b, or a module in e might change to b (this corresponds to rule r_2 and r_3 in Φ_1).

Figure 4: A communicating FSM with a distinction between modules in disconnected states $s \in S$ and connected states $s' \in S$. The number of messages needed to implement this scheme corresponds to the number of vertices with outgoing edges with $!$-tokens.

The number of messages required to implement the rewriting scheme Φ_1 corresponds to the number of vertices with outgoing edges with $!$-labels in Fig. 4. In this particular example, the vertex set is (a', b, b', e), so four messages are sufficient to implement the given instance of metamorphosis.
4 Regulation

This section describes the metamorphic process at the least abstract level: the regulatory network description. Regulatory networks have been used before for robot assembly in the form of gene regulatory networks [2]. We elaborate on this work by (1) introducing an abstract representation of a regulatory network in Subsection 4.1 and 4.2, (2) making explicit the relation with communicating FSMs by coupled regulatory networks in Subsection 4.3, and (3) opening up the possibility to design rather than evolve such a regulatory network by introducing two elementary entities (a) A NAND port, (b) a flip-flop in Subsection 4.4. Using those entities a regulatory network can be constructed that corresponds to the rule sets in Section 2. Due to its central role of being able to implement an indeterministic rule, a flip-flop is implemented in Subsection 4.5.

4.1 Regulatory network

For an introduction to gene regulatory networks, see [2]. Here we will briefly recapitulate its properties. A regulatory network is a tuple \(\{G, P\} \). It consists out of a set of regulatory entities \(\{g_0, \ldots, g_L\} \in G \), and a set of regulated elements, artificial proteins, \(\{p_0, \ldots, p_M\} \in P \) with \(p_i \in \mathbb{R}_{\geq 0} \). The proteins are updated asynchronously according to Eq. 3. We will use the shorthand \(p_t \) to indicate \(p[t] \), and \(\tilde{p}_t \) for \(p[t + \Delta t] \) (with varying \(\Delta t \)). \(\{G, P\} \) can be depicted as a graph, with \(P \) as the vertices and \(G \) denoting the edges.

\[
U(\tilde{g}_{ij}) : \tilde{p}_i = \Theta(p_i - \kappa + \sum_{j \in N_i} \Psi_{ij}) \quad \text{with} \quad \Psi_{ij} = \begin{cases} \gamma_{ij} & \text{if } \alpha_{ij} < p_j < \beta_{ij} \\ -\gamma_{ij} & \text{if } \beta_{ij} < p_j < \alpha_{ij} \\ 0 & \text{else} \end{cases}
\] (3)

The regulatory update rule \(U \) for a probabilistic chosen entity \(\tilde{g}_{ij} \) describes the ingoing edges from the vertices \(p_j \) in neighborhood \(N_i \) to vertex \(p_i \). To calculate the new quantity of \(\tilde{p}_i \) a non-linearity \(\Psi_{ij} \) is used. The edge \(\tilde{g}_{ij} \) is not a scalar, but a vector \(\alpha_{ij}, \beta_{ij}, \gamma_{ij} \), with \(\alpha_{ij}, \beta_{ij}, \gamma_{ij} \in \mathbb{R}_{\geq 0} \). The protein \(p_j \) can either up-regulate or down-regulate \(p_i \). If \(\alpha_{ij} < \beta_{ij} \) the protein \(p_i \) is up-regulated, if \(\alpha_{ij} > \beta_{ij} \) it is down-regulated. The rate of regulation is defined by \(\gamma_{ij} \). If the regulating entity does not fall in between the limits defined by \(\alpha_{ij} \) and \(\beta_{ij} \) nothing happens. That is, the protein \(p_i \) is only decayed with a rate defined by \(\kappa \). The proteins are capped by a sigmoid function, \(\Theta(x) \) which enforces the protein quantity to be between \(\theta_{\text{min}} \) and \(\theta_{\text{max}} \).

4.2 Types of regulators

We simplify the regulatory network by only admitting “low-pass” \((p < \alpha) \) and “high-pass” \((p > \alpha) \) protein quantity filters, rather than the “band-pass” filters in \(\Psi_{ij} \) in Eq. 3.

\[
\Psi_{ij} = \begin{cases} \gamma_{ij} \epsilon_{ij} \frac{1 - \delta_{ij}}{2} & \text{if } p_j > \alpha_{ij} \\ \gamma_{ij} \epsilon_{ij} \frac{1 + \delta_{ij}}{2} & \text{if } p_j < \alpha_{ij} \\ 0 & \text{else} \end{cases}
\] (4)

Equation 4 only needs one threshold parameter, \(\alpha_{ij} \). The change in regulated protein is defined by \(\gamma \in \mathbb{R}_{\geq 0} \). There are four flavors of regulator types. The low-pass filter is defined by \(\delta_{ij} = 1 \), which returns a positive result for \(p_j < \alpha_{ij} \). The high-pass filter is defined by \(\delta_{ij} = -1 \). Both filters can either increase or decrease the target product \(p_i \). This is defined by \(\epsilon_{ij} \in \{1, -1\} \). Let us introduce the following notation for the regulating entities: \(R^+_{\alpha} \) is turned on at low protein quantities and is driving its target up \((\delta_{ij} = \epsilon_{ij} = 1) \); \(R^-_{\alpha} \) is turned on likewise, but inhibits its target \((\delta_{ij} = -\epsilon_{ij} = 1) \); \(R^+_{\gamma} \) is turned on at high protein quantities and is driving its target up \((\delta_{ij} = -\epsilon_{ij} = -1) \); \(R^-_{\gamma} \) is turned on likewise and inhibits its target \((\delta_{ij} = \epsilon_{ij} = -1) \).

4.3 Coupled regulatory networks

The regulatory network abstraction allows us to describe one robot module. Now we will need to describe inter-module communication as explicated in Section 3. If each robot module is a dynamic system, this problem can be formulated as a synchronization problem for coupled extended dynamical systems [15]. The representation in Fig. 5 is different from coupled random boolean networks or Kauffman networks by the
following five properties. (1) A node represents a protein p_i, an edge represents a gene (rather than a node representing a gene). (2) More than two states (or spins) per node. (3) A neighbor graph N_i per node, rather than fixing the number of neighbors to R for each node. (4) Incremental cross-coupling between networks ($\Delta p_i(M_1) = c(p_i(M_2))$ rather than $p_i(M_1) = p_i(M_2)$ with M_i a network, and c a coupling function). (5) An asynchronous updating rule for the edges.

The rational behind the listed properties is as follows. (1) Cells communicate by protein vectors. We are interested in protein quantities rather than in gene activity. (2) Protein quantities are real-valued, not binary. (3) A regulatory network needs to be designed and enforcing the same number of genes between two proteins introduces an unnecessary design constraint. (4) The same regulatory network exists in each robot module. If protein quantities are set to the same value in both modules, synchronization occurs and all robot modules will converge to the same state. Hence, the coupling is incremental (the protein quantity is increased or decreased) and cross-coupled ($r_2!$ in robot i influences $r_x? in robot j$). (5) A synchronous updating rule — a global clock — seems to be biased to create rhythmic patterns [6] and such a bias we want to avoid.

Fig. 5 shows the representation of the rule r_3 from Eq. 1. To substantiate our case that it is possible to represent all rules with a regulating network, we present building blocks in the next subsection.

4.4 Network motifs

In [1] several network motifs are described, such as negative auto-regulation, positive auto-regulation, feed-forward loops and single-input modules. Here we will introduce two “network motifs” originating from digital circuit logic. (1) A logical NAND port and (2) a flip-flop. Those elements are created by the R^+_1, R^+_{-1}, R^+_{-2} and R^-_1 regulators from Subsection 4.2.

First, we show that it is possible to implement a logical NAND port. A NAND port, also called the Sheffer stroke, is functionally complete and can be used to constitute a logical formal system. In other words, all the other boolean gates can be created by a concatenation of NAND operations.

In Fig. 6 a NAND port is visualized. Likewise, we can for example create a logical AND port by the combination of an $R^+_{-1,80}$ edge, and an $R^-_{+1,80}$ edge. Only when both quantities are above an upper threshold ($\alpha = 80$) the dis-inhibition of the latter edge stops.

Second, we describe the flip-flop. The flip-flop is a bistable circuit with two states and a switching mechanism. It stores one bit of memory. A rule like r_1 in Eq. 1 requires such a bistable circuit. As stated before, this rule is indeterministic and can either cause a transition of e toward $e’$ or respectively toward $f’$. Moreover, the flip-flop deserves some emphasis because bistable mechanisms might very well be involved in (robot) cell differentiation [10].

The flip-flop in Fig. 7 implements rule r_1 in Φ_1 (see Eq. 1). Exactly the same regulatory network exist on both robot modules (left and right). By asynchronous updating, it happens that either the left or the right module will increase protein x beyond its threshold ($\alpha = 80$ on a $\theta_{max} = 100$). As soon as this takes place, one of the inhibiting connections between x_i and x_j becomes active. Then the number of proteins of its “competitor” will be reduced. Although in the beginning the winners might alternate, in the end — if γ is large enough in $R^-_{+1,\gamma}$ — there will be a single winner.
4.5 Bistable Circuit Implementation

We would like to reinstate that our main goal is a design methodology for metamorphosis. However, due to its pivotal role in the describe a graph rewriting rule set as \(\Phi_1 \) in the form of a regulatory network, the bistable circuit is implemented. It allows describing indeterministic rules like \(r_1 \in \Phi_1 \) (in Eq. 1). Fig. 8 shows the results of a run with a C implementation of the flip-flop as defined in Fig. 7.

The existence of network motifs like the logical NAND port and the bistable circuit allows us to design a regulatory circuit corresponding to the metamorphic rule sets defined in Section 2.

5 Conclusion

The design trajectory is described step-by-step. To understand a regulatory network for metamorphosis three levels of abstraction are discussed. It starts at the most abstract level with a graph rewriting grammar. At an intermediate level, it continues with a communicating finite state machine description. At the lowest level of abstraction, a regulatory network implements the state transitions on each robot module by (mutually interacting) artificial proteins.

As stated in the introduction, a top-down, formal, and explicit representation provides clear benefits over yet another ad-hoc evolutionary technique, most of all, it allows for benchmarking. In future research, the top-down approach will be compared with, among others, evolved robotic metamorphic gliders [14].
Acknowledgments

The authors would like to thank the anonymous referees for their constructive comments. The “REPLICATOR” project is funded by the European Commission within the work programme “Cognitive Systems, Interaction, Robotics” under grant no. 216240.

References

