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a Faculty of Industrial Engineering, Eindhoven University of Technology, The
Netherlands

b Center for Mathematics and Computer Science, Amsterdam, The Netherlands,
Peter.Bosman@cwi.nl, Han.La.Poutre@cwi.nl

c Department of Information and Computing Sciences, Utrecht University, The
Netherlands

The full version of this paper has been accepted for publication at the2010 Genetic and Evolutionary Computation — GECCOconference.

1 Introduction
Optimization problems in real-world settings are often dynamic and need to be solved online, i.e. as time
goes by. Moreover, current decisions may have future consequences, i.e. time-dependence, requiring an-
ticipation of future situations to make well-informed decisions [1]. In real-world optimization problems,
often more than one objective needs to be optimized at the same time. The optimum then is no longer a
single solution but a set of solutions called the Pareto front. Population-based methods such as evolutionary
algorithms (EAs) are among the state-of-the-art in solvingMO optimization problems. There is currently no
literature on how to perform anticipation in the optimization of multiple dynamically-changing objectives.

Hospital resource management is concerned with the efficient allocation of resources, i.e. operating room
(OR) time slots and hospital care beds. Here, uncertain patient arrivals and treatment processes cause re-
source usage to behave stochastically and dynamically. Moreover, multiple care units have to be considered
as patient treatment processes often involve more than one care unit. Also, resources are often shared by
different treatment processes. An extensive, validated simulation is available (see [3]) for four types of sur-
gical and emergency patient pathways that involve the OR andsix postoperative care units. Patient routing
between units may deviate from pathways if no resource is available at the required unit.

We show how, for the dynamic MO problem of hospital resource management, anticipatory solutions
can be obtained, providing better results than non-anticipatory solutions.

2 Definition and Approach
We denote them objectives byfi(x), i ∈ 0, 1, ...,m − 1 and without loss of generality aim to minimize all
objectives. In dynamic optimization, all objectives are explicitly a function of a time parametert in addition
to the decision variablesx. Mathematically, we optimize the functional

min
x(t)

{(

∫

t
end

0

f0(x(t), t) dt, . . . ,

∫

t
end

0

fm−1(x(t), t) dt

)}

(1)

This integral represents optimization over time. We determine the resource allocation using policies,π,
i.e. parameterized functions that return an allocation decision given the current situation, and optimize the
parameters of allocation policies using a MO evolutionary algorithm (MOEA).



Our policy,π(t, u), for unit u ∈ U is an iterative step-function that returns an allocation decision based
on current problem variables. A (non-)anticipatory policyconsiders the (current) future interval and the
outcome depends on the utilization observed (attnow) in [tnow; tnow + ∆t].

We consider three objectives: maximize the mean total number of patients discharged after complete
treatment (f0(π)), minimize the mean resource costs (f1(π)) and minimize the mean back-up capacity
usage (f2(π)). Detailed definitions can be found in [3]. Finally, increased availability of resource capacity is
coupled with increased demand for care of related treatmenttypes, modeling increased attraction of patients
following capacity enlargement or reputation improvementof a hospital unit.

3 Experiments
The MOEA we used in our experiments is SDR-AVS-MIDEA [2]. The genes correspond to the policy
parameters as described above. The parameters for SDR-AVS-MIDEA were based on [2]. The simulation
is run withπ(t, u), u ∈ U .
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Figure 1: Three-dimensional Pareto fronts computed from all runs

Figure 1 shows Pareto fronts computed over all runs. We note that without anticipation, already better
results than current real-world practice are obtained. With anticipation however, the anticipatory policy
picks up on the fact that increased availability of resourcecapacity entails an increase in demand for care
of this type of treatment. Performances are comparable forf1 . 70. For largerf1 values the use of
predicted occupancy information in the anticipatory policy considerably improves throughput. The increased
frequency in demand for care established by the optimized anticipatory policy also results in more efficient
usage of beds.

4 Summary and Conclusions
We have focused on the design of EAs for solving dynamic MO optimization problems. Typically, opti-
mization has to be performed online. Because for real-worldproblems running an optimizer online, i.e. in
real time, is not always feasible, we have studied the feasibility of an offline policy-based approach. We
note that our results may be slightly optimistic as we slightly strengthened the coupling of arrival processes
to resource capacity to better illustrate the contributionof anticipation; in practice this coupling may be
weaker and less instantaneous. However, our results illustrate, for the first time, that time-dependence can
be detected and dealt with successfully for dynamic optimization problems with multiple objectives using
anticipatory policies.
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