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1 Introduction
In this paper, we propose an automated multi-agent multi-issue negotiation solution to solve a resource
allocation problem. We present a multilateral negotiation model, by which agents bid sequentially in con-
secutive rounds. Issues are bundled and negotiated concurrently, so win-win opportunities can be generated
as trade-offs exist between issues. We develop heuristics of negotiation strategies for three-agent two-issue
cases where the agents have non-linear utility functions and incomplete information about his opponents’
preferences, deadlines, etc. The strategies are composed of a Pareto-optimal-search method and conces-
sion strategies. An important technical contribution of this work lies in the development of the Pareto-
optimal-search method for three-agent multilateral negotiation. Moreover, we present the identification of
agreements and Pareto-optimal outcomes achieved by our methods in the mathematical way. Compared
to game-theoretic solutions, our heuristic methods are practical and tractable; the whole solution is very
efficient such that (near) Pareto-optimal outcomes can be achieved.

2 The Negotiation Model
Suppose three agents N = {1, 2, 3} partition two issues (resources) M = {1, 2} through negotiation. The
range of each issue is normalized to a continuous range [0, 1]. Each agent i ∈ N requires a combination
of a part of every issue j ∈ M , and only a unanimous agreement can be accepted. The negotiation takes
place round by round n ∈ N until an agreement is reached or some agent quits. In each round, three agents
bid their own desired parts of two issues, xi = (xi,1, xi,2), sequentially in some (pre-specified) order. If
the bid profile x = (x1,x2,x3) forms an agreement, in which the sum of all bids of each issue is no more
than the total value 1, agent i will get a utility ui(x, n) = vi(xi). We assume the valuation function vi

to be continuous and strictly monotonically increasing in each of the issues and the utility function ui is
strictly convex. All agents get zero utility without agreements. In this model, every agent’s preference and
negotiation deadline are private information.

3 The Negotiation Strategies
When it is an agent’s turn to bid, given his opponents’ latest bids, he needs to determine i) a desired utility ci

and ii) one bid xi of the utility. Given agent i’s utility function, a utility can be represented by an indifference
curve, which is a graph showing different combinations of issues, between which the agent is indifferent.
Given set Ci of all points on the curve, i.e., Ci = {xi | vi(xi) = ci}, agent i can choose a most satisfying bid
which benefits his opponents most and gives himself the same maximum utility. This is the semi-cooperative
part of a competitive game to generate win-win opportunities and reach Pareto-optimal outcomes possibly.
For the first bid, the agent just chooses one point on the curve of his initial desired utility randomly.

1The full version of this paper appeared in: Proceedings of the 12th International Conference on Principles of Practice in Multi-
Agent Systems (PRIMA’09), Nagoya, Japan, December 2009.



First, we present our Pareto-optimal-search method, the orthogonal bidding strategy, which lets agent
i find the most satisfying bid on his current indifference curve. The idea is to make a reference point ri

based on the other two agents’ latest bids and bid the point in Ci which is closest (measured in the Euclidean
distance) to ri. We propose the notion of reference point ri = (ri,1, ri,2) = (1 −

∑
k∈N−{i} xk,1, 1 −∑

k∈N−{i} xk,2), because the rest of the issues (represented by ri) left by his opponents imply the two
agents’ joint expectation of agent i’s partition and bid xi closest to ri can make them most satisfied. Figure
1 left illustrates how agents use the orthogonal bidding strategy to make bids sequentially. In this figure, the
bidding order is agent 2 (green), agent 3 (red) and agent 1 (blue); the odd steps determine reference points
and the even steps determine bids based on the reference points.
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Figure 1: Examples of the Orthogonal Bidding Strategies

Given relatively low utilities, suppose three agents keep bidding (with the orthogonal strategy) on the
indifference curves of the utilities without concession and no agent quits. Figure 1 right illustrates the
process, in which the bids and reference points move closer round by round. Finally, each agent’s bids and
reference points are converged into one point on his indifference curve. That means, each agent’s final bid
completely satisfies his opponents’ desires and an agreement is reached. We give the following lemma.

Lemma 1. A profile of bids x = (x1,x2,x3) is an agreement ⇐⇒ each reference point ri Pareto
dominates bid xi, i.e., ri,j ≥ xi,j , where i ∈ N and j ∈ M .

However, an agreement that all issues are exactly partitioned does not necessarily indicate a Pareto-
optimal solution in multi-issue negotiation. Agents may still have chances to get Pareto improvements by
making trade-offs between issues. We analyse that every combination of two points (bids) on the other two
agents’ curves introduces a reference point to agent i. If agent i chooses any one of those reference points
as his bid where ri,j > 0 (j ∈ M), his opponents can get their desired utilities and agent i can get a utility
larger than zero. We call the area composed of all such reference points the reference area of agent i and let
Xi denote the set of points in it. For each agent i, once his reference area and his indifference curve have
intersections, there are agreements. We give the following lemma.

Lemma 2. |Xi ∩ Ci| > 1 where i ∈ N ⇐⇒ there is an agreement x such that ui(x, n) > ci.

Only if the reference area and the indifference curve of every agent i has a unique intersection, the profile
of three intersections (bids) is a Pareto-optimal solution. We give the following theorem with a condition
that the indifference curves are strictly convex.

Theorem 1. |Xi ∩ Ci| = 1 where i ∈ N ⇐⇒ there is a Pareto-optimal solution x = (x1,x2,x3) where
ui(x, n) = ci.

Second, we study how agents make concession by lowering their desires of utilities, if no agreement
can be reached on their current indifference curves. In this work, we develop several concession strategies.
Agent i can concede a fixed amount utility, or concede a fixed fraction of current utility ci, or concede a
fixed fraction of the difference between his current utility ci and the utility introduced by the latest reference
point ri, or concede a fixed fraction of the remaining issues, given all agents’ latest bids.


